AP® BIOLOGY EQUATIONS AND FORMULAS

Statistical Analysis and Probability

Mean

Standard Deviation

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$s = \sqrt{\frac{\sum (x_i - \overline{x})^2}{n - 1}}$$

Standard Error of the Mean

Chi-Square

$$SE_{\bar{x}} = \frac{s}{\sqrt{n}}$$

$$\chi^2 = \sum \frac{(o-e)^2}{e}$$

Chi-Square Table

p value	Degrees of Freedom								
	1	2	3	4	5	6	7	8	
0.05	3.84	5.99	7.81	9.49	11.07	12.59	14.07	15.51	
0.01	6.63	9.21	11.34	13.28	15.09	16.81	18.48	20.09	

 \bar{x} = sample mean

n = sample size

s = sample standard deviation (i.e., the sample-based estimate of the standard deviation of the population)

o = observed results

e =expected results

 $\Sigma = \text{sum of all}$

Degrees of freedom are equal to the number of distinct possible outcomes minus one.

Laws of Probability

If A and B are mutually exclusive, then:

$$P(A \text{ or } B) = P(A) + P(B)$$

If A and B are independent, then:

$$P(A \text{ and } B) = P(A) \times P(B)$$

Hardy-Weinberg Equations

$$p^2 + 2pq + q^2 = 1$$
 $p = \text{frequency of allele 1 in a}$ population $p + q = 1$ $q = \text{frequency of allele 2 in a}$ population

Metric Prefixes

Factor	Prefix	<u>Symbol</u>
109	giga	G
106	mega	M
103	kilo	k
10-1	deci	d
10-2	centi	c
10^{-3}	milli	m
10-6	micro	μ
10 ⁻⁹	nano	n
10-12	pico	p

Mode = value that occurs most frequently in a data set

Median = middle value that separates the greater and lesser halves of a data set

Mean = sum of all data points divided by number of data points

Range = value obtained by subtracting the smallest observation (sample minimum) from the greatest (sample maximum)

Rate and Growth

Rate
dY

dY =amount of change

dt = change in time

Population Growth

B = birth rate

 $\frac{dN}{dt} = B - D$

D = death rate

Exponential Growth

N =population size

K = carrying capacity

Logistic Growth

 $r_{\text{max}} = \text{maximum per capita}$ growth rate of population

Water Potential (\Psi)

 $\Psi = \Psi_P + \Psi_S$

 Ψ_p = pressure potential

 Ψ_{s} = solute potential

The water potential will be equal to the solute potential of a solution in an open container because the pressure potential of the solution in an open container is zero.

The Solute Potential of a Solution

$$\Psi_S = -iCRT$$

i = ionization constant (1.0 for sucrose)because sucrose does not ionize in water)

C = molar concentration

R = pressure constant(R = 0.0831 liter bars/mole K)

 $T = \text{temperature in Kelvin} (^{\circ}C + 273)$

 $\mathbf{pH} = -\log[H^+]$

Simpson's Diversity Index

Diversity Index = $1 - \sum \left(\frac{n}{N}\right)^2$

n = total number of organisms of a particular species

N = total number of organisms of all species

Surface Area and Volume

Surface Area of a Sphere

Volume of a Sphere

r = radius

 $SA = 4\pi r^2$

 $V=\frac{4}{3}\pi r^3$

l = length

Surface Area of a Rectangular Solid

Volume of a Rectangular Solid

h = height

w = width

SA = 2lh + 2lw + 2wh

 $SA = 2\pi rh + 2\pi r^2$

V = lwh

s = length of one

Surface Area of a Cylinder

Volume of a Cylinder $V = \pi r^2 h$

SA = surface area

side of a cube

Surface Area of a Cube

Volume of a Cube

 $SA = 6s^2$

 $V = s^3$

V = volume