ADVANCED PLACEMENT PHYSICS 1 TABLE OF INFORMATION

CONSTANTS AND CONVERSION FACTORS			
Universal gravitational constant,	Acceleration due to gravity at Earth's surface,		
$G = 6.67 \times 10^{-11} \mathrm{m^3/(kg \cdot s^2)} = 6.67 \times 10^{-11} \mathrm{N \cdot m^2/kg^2}$	$g = 9.8 \text{ m/s}^2$		
1 atmosphere of pressure,	Magnitude of the gravitational field strength at the		
$1 \text{ atm} = 1.0 \times 10^5 \text{ N} / \text{m}^2 = 1.0 \times 10^5 \text{ Pa}$	Earth's surface, $g = 9.8$ N/kg		

PREFIXES				
Factor Prefix		Symbol		
10 ¹²	tera	Т		
10 ⁹	giga	G		
10 ⁶	mega	М		
10 ³	kilo	k		
10^{-2}	centi	с		
10 ⁻³	milli	m		
10 ⁻⁶	micro	μ		
10 ⁻⁹	nano	n		
10 ⁻¹²	pico	р		

UNIT SYMBOLS		1	nertz,	ertz, Hz newton,		vton,	Ν
		j	joule,		pascal,		Pa
		kil	kilogram,		sec	second,	
		r	meter,		watt,		W
VALUES OF TRIGONOMETRIC FUNCTIONS FOR							
COMMON ANGLES							
θ	0°	30°	37°	45°	53°	60°	90°
$\sin \theta$	0	1/2	3/5	$\sqrt{2}/2$	4/5	$\sqrt{3}/2$	1

4/5

3/4

 $\sqrt{2}/2$

1

3/5

4/3

1/2

 $\sqrt{3}$

0

 ∞

The following conventions are used in this exam:

• The frame of reference of any problem is assumed to be inertial unless otherwise stated.

 $\cos\theta$

 $\tan\theta$

- Air resistance is assumed to be negligible unless otherwise stated.
- Springs and strings are assumed to be ideal unless otherwise stated.
- Fluids are assumed to be ideal, and pipes are assumed to be completely filled by fluid, unless otherwise stated.

1

0

 $\sqrt{3}/2$

 $\sqrt{3}/3$

GEOMETRY AND TRIGONOMETRY					
Rectangle	Rectangular Solid		A = area	Right Triangle	
A = bh	$V = \ell w h$		b = base	$a^2 + b^2 = c^2$	
Triangle $A = \frac{1}{2}bh$	Cylinder $V = \pi r^2 \ell$ $S = 2\pi r \ell + 2\pi r^2$		C = circumference h = height $\ell = \text{length}$ r = radius s = arc length	$\sin \theta = \frac{a}{c}$ $\cos \theta = \frac{b}{c}$	
Circle	Sphere		S = surface area V = volume	$\tan \theta = \frac{a}{b}$	
$A = \pi r^2$	$V = \frac{4}{\pi}r^3$	·/	w = width	c	
$C = 2\pi r$	3		θ = angle		
$s = r\theta$	$S = 4\pi r^2$			b	

MECHANICS AND FLUIDS

I

$\begin{aligned} x &= x_0 + v_{x0}t + \frac{1}{2}a_xt^2 \\ v_x^2 &= v_{x0}^2 + 2a_x(x - x_0) \\ \vec{x}_{cm} &= \frac{\sum \vec{m}_i \vec{x}_i}{\sum m_i} \\ \vec{a}_{sys} &= \frac{\sum \vec{F}}{m_{sys}} = \frac{\vec{F}_{net}}{m_{sys}} \\ \left \vec{F}_g \right &= G\frac{m_1 m_2}{r^2} \\ \left \vec{F}_f \right &\leq \left \mu \vec{F}_n \right \\ \vec{F}_s &= -k\Delta \vec{x} \\ a_c &= \frac{v^2}{r} \\ K &= \frac{1}{2}mv^2 \\ W &= F_{\parallel}d = Fd\cos\theta \\ \Delta K &= \sum W_i = \sum F_{\parallel,i}d_i \\ \Delta U_s &= \frac{1}{2}k(\Delta x)^2 \\ U_G &= -\frac{Gm_1 m_2}{r} \\ \Delta U_g &= mg\Delta y \\ P_{avg} &= \frac{W}{\Delta t} = \frac{\Delta E}{\Delta t} \\ P_{inst} &= F_{\parallel}v = Fv\cos\theta \\ \vec{p} &= m\vec{v} \\ \vec{F}_{net} &= \frac{\Delta \vec{p}}{\Delta t} = m\vec{a} \\ \vec{J} &= \vec{F}_{avg}\Delta t = \Delta \vec{p} \\ \vec{v}_{cm} &= \frac{\sum \vec{p}_i}{\sum m_i} = \frac{\sum m_i \vec{v}_i}{\sum m_i} \end{aligned}$	$d = \text{distance}$ $E = \text{energy}$ $F = \text{force}$ $J = \text{impulse}$ $k = \text{spring constant}$ $K = \text{kinetic energy}$ $m = \text{mass}$ $p = \text{momentum}$ $P = \text{power}$ $r = \text{radius, distance, or}$ $position$ $t = \text{time}$ $U = \text{potential energy}$ $v = \text{velocity or speed}$ $W = \text{work}$ $x = \text{position}$ $y = \text{height}$ $\theta = \text{angle}$ $\mu = \text{coefficient of friction}$	$\theta = \theta_{0} + \omega_{0}t + \frac{1}{2}\alpha t^{2}$ $\omega^{2} = \omega_{0}^{2} + 2\alpha (\theta - \theta_{0})$ $v = r\omega$ $a_{T} = r\alpha$ $\tau = r_{\perp}F = rF\sin\theta$ $I = \sum m_{i}r_{i}^{2}$ $I' = I_{cm} + Md^{2}$ $\alpha_{sys} = \frac{\Sigma\tau}{I_{sys}} = \frac{\tau_{net}}{I_{sys}}$ $K = \frac{1}{2}I\omega^{2}$ $W = \tau\Delta\theta$ $L = r\omega$ $L = rmv\sin\theta$ $\Delta L = \tau\Delta t$ $\Delta x_{cm} = r\Delta\theta$ $T = \frac{1}{f}$ $T_{s} = 2\pi\sqrt{\frac{\ell}{g}}$ $x = A\cos(2\pi ft)$ $x = A\sin(2\pi ft)$ $\rho = \frac{m}{V}$ $P = \frac{F_{\perp}}{A}$ $P = P_{0} + \rho gh$ $P_{gauge} = \rho gh$ $F_{b} = \rho Vg$ $A_{1}v_{1} = A_{2}v_{2}$ $P_{1} + \rho gy_{1} + \frac{1}{2}\rho v_{1}^{2} = P_{2} + \rho gy_{2} + \frac{1}{2}\rho v_{1}^{2}$	A = amplitude or area d = distance f = frequency F = force h = height I = rotational inertia k = spring constant K = kinetic energy $\ell = \text{length}$ L = angular momentum m = mass M = mass P = pressure r = radius, distance, or position t = time T = period v = velocity or speed V = volume W = work x = position $\varphi = \text{vertical position}$ $\alpha = \text{angular acceleration}$ $\theta = \text{angle}$ $\rho = \text{density}$ $\tau = \text{torque}$ $\omega = \text{angular speed}$
---	--	---	--