ADVANCED PLACEMENT PHYSICS 1 TABLE OF INFORMATION

CONSTANTS AND CONVERSION FACTORS	
Universal gravitational constant,	Acceleration due to gravity at Earth's surface,
$G=6.67 \times 10^{-11} \mathrm{~m}^{3} /\left(\mathrm{kg} \cdot \mathrm{s}^{2}\right)=6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}$	$g=9.8 \mathrm{~m} / \mathrm{s}^{2}$
1 atmosphere of pressure,	Magnitude of the gravitational field strength at the
$1 \mathrm{~atm}=1.0 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}=1.0 \times 10^{5} \mathrm{~Pa}$	Earth's surface, $g=9.8 \mathrm{~N} / \mathrm{kg}$

PREFIXES		
Factor	Prefix	Symbol
10^{12}	tera	T
10^{9}	giga	G
10^{6}	mega	M
10^{3}	kilo	k
10^{-2}	centi	c
10^{-3}	milli	m
10^{-6}	micro	μ
10^{-9}	nano	n
10^{-12}	pico	p

UNIT	hertz,	Hz	newton,	N
	joule,	J	pascal,	Pa
	kilogram,	kg	second,	s
	meter,	m	watt,	W

VALUES OF TRIGONOMETRIC FUNCTIONS FOR								
θ	0°	30°	37°	45°	53°	60°	90°	
$\sin \theta$	0	$1 / 2$	$3 / 5$	$\sqrt{2} / 2$	$4 / 5$	$\sqrt{3} / 2$	1	
$\cos \theta$	1	$\sqrt{3} / 2$	$4 / 5$	$\sqrt{2} / 2$	$3 / 5$	$1 / 2$	0	
$\tan \theta$	0	$\sqrt{3} / 3$	$3 / 4$	1	$4 / 3$	$\sqrt{3}$	∞	

The following conventions are used in this exam:

- The frame of reference of any problem is assumed to be inertial unless otherwise stated.
- Air resistance is assumed to be negligible unless otherwise stated.
- Springs and strings are assumed to be ideal unless otherwise stated.
- Fluids are assumed to be ideal, and pipes are assumed to be completely filled by fluid, unless otherwise stated.

MECHANICS AND FLUIDS					
$\begin{aligned} & v_{x}=v_{x 0}+a_{x} t \\ & x=x_{0}+v_{x 0} t+\frac{1}{2} a_{x} t^{2} \\ & v_{x}^{2}=v_{x 0}^{2}+2 a_{x}\left(x-x_{0}\right) \\ & \vec{x}_{\mathrm{cm}}=\frac{\sum m_{i} \vec{x}_{i}}{\sum m_{i}} \\ & \vec{a}_{\mathrm{sys}}=\frac{\sum \vec{F}}{m_{\text {sys }}}=\frac{\vec{F}_{\mathrm{net}}}{m_{\mathrm{sys}}} \\ & \left\|\vec{F}_{g}\right\|=G \frac{m_{1} m_{2}}{r^{2}} \\ & \left\|\vec{F}_{f}\right\| \leq\left\|\mu \vec{F}_{n}\right\| \\ & \vec{F}_{s}=-k \Delta \vec{x} \\ & a_{c}=\frac{v^{2}}{r} \\ & K=\frac{1}{2} m v^{2} \\ & W=F_{\\|} d=F d \cos \theta \\ & \Delta K=\sum W_{i}=\sum F_{\\| l i} d_{i} \\ & \Delta U_{s}=\frac{1}{2} k(\Delta x)^{2} \\ & U_{G}=-\frac{G m_{1} m_{2}}{r} \\ & \Delta U_{g}=m g \Delta y \\ & P_{\text {avg }}=\frac{W}{\Delta t}=\frac{\Delta E}{\Delta t} \\ & P_{\text {inst }}=F_{\\|} v=F v \cos \theta \\ & \vec{p}=m \vec{v} \\ & \vec{F}_{\text {net }}=\frac{\Delta \vec{p}}{\Delta t}=m \frac{\Delta \vec{v}}{\Delta t}=m \vec{a} \\ & \vec{J}=\vec{F}_{\text {avg }} \Delta t=\Delta \vec{p} \\ & \vec{v}_{\mathrm{cm}}=\frac{\sum \vec{p}_{i}}{\sum m_{i}}=\frac{\sum m_{i} \vec{v}_{i}}{\sum m_{i}} \end{aligned}$	```\(a=\) acceleration \(d=\) distance \(E=\) energy \(F=\) force \(J=\) impulse \(k=\) spring constant \(K=\) kinetic energy \(m=\) mass \(p=\) momentum \(P=\) power \(r=\) radius, distance, or position \(t=\) time \(U=\) potential energy \(v=\) velocity or speed \(W=\) work \(x=\) position \(y=\) height \(\theta=\) angle \(\mu=\) coefficient of friction```				

