Graphical Methods-Summary

From Modeling Instruction in High School Physics materials

A graph is one of the most effective representations of the relationship between two variables. The independent variable (one controlled by the experimenter) is usually placed on the x-axis. The dependent variable (one that responds to changes in the independent variable) is usually placed on the y-axis. It is important for you to be able interpret a graphical relationship and express it in a written statement and by means of an algebraic expression.

Graph shape	Written relationship	Modification required to linearize graph	Algebraic representation
y	As x increases, y remains the same. There is no relationship between the variables.	None	y = b or y is constant
y x	As x increases, y increases proportionally. Y is directly proportional to x.	None	y = mx + b
y x	As x increases, y decreases. Y is inversely proportional to x.	Graph, y vs. $\frac{1}{x}$ Or y vs. x^{-1}	$y = m\left(\frac{1}{x}\right) + b$
y x	Y is proportional to the square of x.	Graph y vs x ²	$y = mx^2 + b$
y	The square of y is proportional to x.	Graph y ² vs x	$y^2 = mx + b$

• When you state the relationship, tell how y depends on x (e.g., as x increases, y ...).

• Don't forget to replace X and Y with the variables from your experiment. (e.g. if you have a linear v(t) graph then as time increases, velocity increases proportionally so $v \propto t$.)